
Week 3

8086/8088 Addressing Modes,
Instruction Set & Machine Codes

2

Addressing Modes

• When the 8088 executes an instruction, it performs the specified function
on data

• These data, called operands,
– May be a part of the instruction
– May reside in one of the internal registers of the microprocessor
– May be stored at an address in memory

• Register Addressing Mode
– MOV AX, BX
– MOV ES,AX
– MOV AL,BH

• Immediate Addressing Mode
– MOV AL,15h
– MOV AX,2550h
– MOV CX,625

3

Direct Addressing Mode

02003 FF

Example:
MOV AL,[03]

AL=?

MOV CX, [address]

BEED

4

Register Indirect Addressing Mode

MOV AX,
BX
DI
SI

BEED

5

Example for Register Indirect Addressing

• Assume that DS=1120, SI=2498 and AX=17FE show the memory
locations after the execution of:

MOV [SI],AX

DS (Shifted Left) + SI = 13698.

With little endian convention:

Low address 13698 FE

High Address 13699 17

6

Based-Relative Addressing Mode

MOV AH, [] + 1234hDS:BX
SS:BP

AX

DS

BX

1234

3AH+

7

Indexed Relative Addressing Mode
MOV AH, [] + 1234hSI

DI

Example: What is the physical address MOV [DI-8],BL if DS=200 & DI=30h ?
DS:200 shift left once 2000 + DI + -8 = 2028

8

Based-Indexed Relative Addressing Mode

• Based Relative + Indexed Relative
• We must calculate the PA (physical address)

CS
SS BX SI 8 bit displacement

PA= DS : BP + DI + 16 bit displacement
ES

MOV AH,[BP+SI+29]
or

MOV AH,[SI+29+BP]
or

MOV AH,[SI][BP]+29

The
register

order does
not matter

9

Based-Indexed Addressing Mode

MOV BX, 0600h
MOV SI, 0010h ; 4 records, 4 elements each.
MOV AL, [BX + SI + 3]

OR

MOV BX, 0600h
MOV AX, 004h ;
MOV CX,04;
MUL CX
MOV SI, AX
MOV AL, [BX + SI + 3]

10

Summary of the addressing modes
Addressing Mode Operand Default Segment

Register Reg None

Immediate Data None

Direct [offset] DS

Register Indirect [BX]
[SI]
[DI]

DS
DS
DS

Based Relative [BX]+disp
[BP]+disp

DS
SS

Indexed Relative [DI]+disp
[SI]+disp

DS
DS

Based Indexed
Relative

[BX][SI or DI]+disp
[BP][SI or DI]+disp

DS
SS

11

16 bit Segment Register Assignments

Type of
Memory
Reference

Default
Segment

Alternate
Segment

Offset

Instruction Fetch CS none IP

Stack
Operations

SS none SP,BP

General Data DS CS,ES,SS BX, address

String Source DS CS,ES,SS SI, DI, address

String
Destination

ES None DI

Brey

12

Segment override

Segment
Registers

CS DS ES SS

Offset Register IP SI,DI,BX SI,DI,BX SP,BP

Instruction Examples Override Segment Used Default Segment

MOV AX,CS:[BP] CS:BP SS:BP

MOV DX,SS:[SI] SS:SI DS:SI

MOV AX,DS:[BP] DS:BP SS:BP

MOV CX,ES:[BX]+12 ES:BX+12 DS:BX+12

MOV SS:[BX][DI]+32,AX SS:BX+DI+32 DS:BX+DI+32

13

Example for default segments

• The following registers are used as offsets. Assuming that the
default segment used to get the logical address, give the segment
register associated?

a) BP b)DI c)IP d)SI, e)SP, f) BX

• Show the contents of the related memory locations after the
execution of this instruction
MOV [BP][SI]+10,DX
if DS=2000, SS=3000,CS=1000,SI=4000,BP=7000,DX=1299 (all
hex)

14

Assembly Language

• There is a one-to-one relationship between assembly and machine
language instructions

• What is found is that a compiled machine code implementation of a
program written in a high-level language results in inefficient code
– More machine language instructions than an assembled version of an

equivalent handwritten assembly language program
• Two key benefits of assembly language programming

– It takes up less memory
– It executes much faster

15

Languages in terms of applications

• One of the most beneficial uses of assembly language programming
is real-time applications.

• Real time means the task required by the application must be
completed before any other input to the program that will alter its
operation can occur

• For example the device service routine which controls the operation
of the floppy disk drive is a good example that is usually written in
assembly language

• Assembly language not only good for controlling hardware devices
but also performing pure software operations
– searching through a large table of data for a special string of characters
– Code translation from ASCII to EBCDIC
– Table sort routines
– Mathematical routines

• Assembly language: perform real-time operations
• High-level languages: Those operations mostly not critical in time.

16

Converting Assembly Language
Instructions to Machine Code

OPCODE D W MOD REG R/M

• An instruction can be coded with 1 to 6 bytes
• Byte 1 contains three kinds of information:

– Opcode field (6 bits) specifies the operation such as add, subtract, or move
– Register Direction Bit (D bit)

• Tells the register operand in REG field in byte 2 is source or destination operand
– 1:Data flow to the REG field from R/M
– 0: Data flow from the REG field to the R/M

– Data Size Bit (W bit)
• Specifies whether the operation will be performed on 8-bit or 16-bit data

– 0: 8 bits
– 1: 16 bits

• Byte 2 has two fields:
– Mode field (MOD) – 2 bits
– Register field (REG) - 3 bits
– Register/memory field (R/M field) – 2 bits

17

Continued

• REG field is used to identify the register for the first operand

REG W = 0 W = 1
000 AL AX

001 CL CX

010 DL DX

011 BL BX

100 AH SP

101 CH BP

110 DH SI

111 BH DI

18

Continued

• 2-bit MOD field and 3-bit R/M field together specify the second
operand

19

Examples

• MOV BL,AL
• Opcode for MOV = 100010
• We’ll encode AL so

– D = 0 (AL source operand)
• W bit = 0 (8-bits)
• MOD = 11 (register mode)
• REG = 000 (code for AL)
• R/M = 011

OPCODE D W MOD REG R/M

100010 0 0 11 000 011

MOV BL,AL => 10001000 11000011 = 88 C3h
ADD AX,[SI] => 00000011 00000100 = 03 04 h
ADD [BX][DI] + 1234h, AX => 00000001 10000001 __ __ h

=> 01 81 34 12 h

20

Software

• The sequence of commands used to tell a microcomputer what to do is
called a program

• Each command in a program is called an instruction
• 8088 understands and performs operations for 117 basic instructions
• The native language of the IBM PC is the machine language of the

8088
• A program written in machine code is referred to as machine code
• In 8088 assembly language, each of the operations is described by

alphanumeric symbols instead of just 0s or 1s.

ADD AX, BX

Opcode Source operand

Destination operand

21

Instructions

[LABEL:] MNEMONIC [OPERANDS] [; COMMENT]

Address identifier
Max 31 characters

: indicates it opcode
generating instruction

Does not generate any machine code
Instruction

Ex. START: MOV AX,BX ; copy BX into AX

22

DEBUG program instruction set (page 825 mzd)

• Debug instructions
• List of commands

– a Assemble [address] you can type in code this way
– c range address ; compare c 100 105 200
– d [range] ; Dump d 150 15A
– e address [list] ; Enter e 100
– f Fill range list F 100 500 ‘ ‘
– g Go [=address] addresses runs the program
– h Value1 Value2 ; addition and subtraction H 1A 10
– i Input port I 3F8
– r Show & change registers Appears to show the same thing as t,

but doesn't cause any code to be executed.
– t Trace either from the starting address or current location.
– u UnAssemble

23

Some examples with debug

0100 mov ax,24b6
0103 mov di, 85c2
0106 mov dx,5f93
0109 mov sp,1236
010c push ax
010d push di
010e int 3

Display the stack contents after execution.
-D 1230 123F

24

Some examples with DEBUG

• 0100 mov al,9c
• 0102 mov dh,64
• 0104 add al,dh
• 0109 int 3

trace these three commands and observe the flags

• After the code has been entered with the A command
• Use CX to store data indicating number of bytes to save.

BX is the high word.
• Use N filename.com
• Then W command to write to file.
• L loads this file.

25

Example

Copy the contents of a block of memory (16 bytes) starting at
location 20100h to another block of memory starting at 20120h

MOV AX,2000
MOV DS,AX
MOV SI, 100
MOV DI, 120
MOV CX, 10

NXTPT: MOV AH, [SI]
MOV [DI], AH
INC SI
INC DI
DEC CX
JNZ NXTPT

100-10f

120-12f

26

Assembler Directives
.MODEL SMALL ; selects the size of the memory model usually sufficient
max 64K code 64K data

.STACK ; beginning of the stack segment

.DATA ; beginning of the data segment

.CODE ; beginning of the code segment

Ex: .DATA
DATAW DW 213FH
DATA1 DB 52H
SUM DB ? ; nothing stored but a storage is assigned
Ex: .CODE
PROGRAMNAME PROC; Every program needs a name

…. ; program statements
PROGRAMNAME ENDP

END PROGRAMNAME

27

Sample Program
title Hello World Program (hello.asm)
; This program displays "Hello, world!"
.model small
.stack 100h
.data
message db "Hello, world!",0dh,0ah,'$‘ ;newline+eoc
.code
main proc

mov ax,@data ; address of data
mov ds,ax
mov ah,9
mov dx,offset message ;disp.msg.starting at 0
int 21h ; or LEA dx,message will do!
mov ax,4C00h ; halt the program and return
int 21h

main endp
end main

28

The PTR Operator

• INC [20h] ; is this byte/word/dword? or
• MOV [SI],5

– Is this byte 05?
– Is this word 0005?
– Or is it double word 00000005?

• Byte or word or doubleword?

• To clarify we use the PTR operator
– INC BYTE PTR [20h]
– INC WORD PTR [20h]
– INC DWORD PTR [20h]

• or for the mov example:
– MOV byte ptr [SI],5
– MOV word ptr[SI],5

29

The PTR Operator

• Would we need to use the PTR
operator in each of the following?

MOV AL,BVAL
MOV DL,[BX]
SUB [BX],2
MOV CL,WVAL
ADD AL,BVAL+1

.data
BVAL DB 10H,20H
WVAL DW 1000H

MOV AL,BVAL
MOV DL,byte ptr [BX]
SUB [BX],byte ptr 2
MOV CL,byte ptr WVAL
ADD AL,BVAL+1

